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ABSTRACT

Track, intensity, and, in some cases, size are usually used as separate evaluation parameters to assess numerical

model performance on tropical cyclone (TC) forecasts. Such an individual-parameter evaluation approach often

encounters contradictory skill assessments for different parameters, for instance, small track error with large

intensity error and vice versa. In this study, an intensity-weighted hurricane track density function (IW-HTDF) is

designed as a new approach to the integrated evaluation of TC track, intensity, and size forecasts. The sensitivity

of the TC track density to TC wind radius was investigated by calculating the IW-HTDF with density functions

defined by 1) asymmetric, 2) symmetric, and 3) constant wind radii. Using the best-track data as the benchmark,

IW-HTDFprovides a specific score value for a TC forecast validated for a specific date and time or duration. This

newTC forecast evaluation approach provides a relatively concise, integrated skill score compared withmultiple

skill scores when track, intensity and size are evaluated separately. It should be noted that actual observations of

TC size data are very limited and so are the estimations of TC size forecasts. Therefore, including TC size as a

forecast evaluation parameter is exploratory at the present. The proposed integrated evaluation method for TC

track, intensity, and size forecasts can be used for evaluating the track forecast alone or in combination with

intensity and size parameters. As observations and forecasts of TC size become routine in the future, including

TC size as a forecast skill assessment parameter will become more imperative.

1. Introduction

The track, intensity, and size of tropical cyclones

(TCs) have been used as evaluation parameters in

assessing TC forecasts or the performance of TC nu-

merical forecast models since the first attempts were

made at forecasting TCs in the Atlantic region in the

1870s (Sheets 1990). For instance, Neumann and

Pelissier (1981) analyzed Atlantic tropical cyclone

forecast errors in track and intensity, separately. Liu and

Xie (2012) used errors in track, intensity, and size to

assess how well the scale-selective data assimilation

(SSDA) approach improved tropical cyclone forecasts

in a limited-area model. More recently, Landsea and

Franklin (2013) estimated the uncertainty of the At-

lantic hurricane database in terms of the errors in track,

intensity, and size. Forecast errors in track, intensity,

and size are also analyzed individually in annual and

seasonal forecast verifications at the National Hurricane

Center (NHC; available online at http://www.nhc.noaa.

gov/verification/verify2.shtml).
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TC track is considered to be a primary assess-

ment variable in TC forecast verification. The way to

assess TC track forecasts is through the differences be-

tween the predicted and observed tracks (i.e., TC track

forecast error), as well as the error relative to a low-skill

climatological forecast (i.e., TC track forecast skill). TC

track forecast error is usually defined as the great-circle

distance between theTC location in the best-track data or

other observation data and the forecast TC center valid at

the forecast verification time. In advisory products, the

TC center is usually defined by the location of minimum

wind or minimum pressure at the surface. The track

forecast error can be calculated through (Neumann and

Pelissier 1981; Powell and Aberson 2001).
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where u0 and l0 are the latitude and longitude, re-

spectively, of the TC center in the best-track or obser-

vation data and uf and lf are the latitude and longitude

of the forecast TC center. Track forecast skill,

representing a normalization of the forecast error

against some standard or baseline, is given by
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where eb is the error of the baseline model and ef is the

error of the forecast being evaluated (Wilks 2006; Liu

and Xie 2012; Cangialosi and Franklin 2015). It is clearly

seen that skill is positive when the forecast error is

smaller than the baseline error, and skill increases as the

forecast error decreases. Track errors from the clima-

tology and persistence statistical model (CLIPER5) are

often used as the baseline eb for evaluating the track

forecast skill of other numerical forecast models and the

official forecast (Neumann 1972; Aberson 1998).

CLIPER5, originally developed in 1972, is a statistical

track forecast model based on climatology and persis-

tence and is used primarily as a benchmark for evalu-

ating the degree of skill in a set of track forecasts, rather

than as a forecast aid.

Forecast intensity (usually maximum wind speed) is

assessed by using intensity forecast error, relative er-

ror, or root-mean-square error, as well as the intensity

forecast skill (e.g., Neumann 1972; Neumann and

Pelissier 1981; DeMaria and Kaplan 1994; Feser and

Von Storch 2008; Xie et al. 2010; Liu and Xie 2012;

Cangialosi and Franklin 2015). Intensity forecast er-

ror is defined as the absolute value of the difference

between the forecast intensity and best-track intensity

or observation data at the forecasting verification

time. Intensity forecast skill can be evaluated by Eq. (2),

and the baseline error eb is fromDecay-SHIFOR5, which

is a version of the Statistical Hurricane Intensity

Forecast (SHIFOR5) model including a weakening

component that occurs when TCs move inland (DeMaria

et al. 2006). SHIFOR5 is a climatology and persistence

model for the intensity that is analogous to the CLIPER5

model for the track (Jarvinen and Neumann 1979; Knaff

et al. 2003).

In addition to the track and intensity of a TC, the TC

size is another significant structure parameter in the

forecast, because the impact of a TC, such as storm

surge, is also affected by TC size (Powell and Reinhold

2007; Maclay et al. 2008; Irish et al. 2008). Also, TC size

has a direct influence on the extent of evacuations, ship

rerouting, along-track timing of the arrival of storm

conditions, and the duration of high winds at a given

location (Hill and Lackmann 2009). TC size can be de-

fined in several ways, including the distance from the TC

center to the outermost closed sea level isobar; the ra-

dius of gale, tropical storm, or hurricane-force winds; the

radius of the maximum wind speed (RMW); and the

breadth of the satellite-observed cloud shield (Hill and

Lackmann 2009; Spencer and Braswell 2001). Most of-

ten, the extent of the 34kt (17ms21) winds is used to

indicate the TC size (Merrill 1984). TCs are usually

asymmetric (Chen and Yau 2003; Xie at al 2011), and

among the parameters that can be used to describe

asymmetric wind structure are the wind radii in the four

quadrants (i.e., northeast, southeast, southwest, and

northwest) relative to the TC center. The size error,

defined as the absolute value of the difference between

the forecast and the best-track data or observation data

at the forecast verification time, and the root-mean-

square error are typically used to assess the size forecast

(Bell and Ray 2004; Demuth et al. 2004; Demuth

et al. 2006).

Although the individual-parameter evaluation ap-

proach is accepted widely, it has limitations in some

practical applications. First, there is a need for an un-

ambiguous and unified assessment for TC forecasts

either based on numerical or statistical models or a

blend of the two. The individual-parameter evaluation

method has difficulty obtaining a reasonable and in-

tegrated comprehensive assessment for the perfor-

mance of a numerical forecast model or an individual

TC forecast when contradicting evaluation indexes for

different parameters are encountered, for instance,

small track error with large intensity error and vice

versa. Second, forecast error and forecast skill are

usually used at the same time, and may provide con-

flicting assessment results, such as small track error

with low track forecast skill. This may be confusing for
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some users (e.g., untrained users or the public) if they

do not understand the different meanings of these two

parameters. Third, track, intensity, and size forecasts

are interdependent, especially when a TC makes

landfall (DeMaria et al. 2009), so utilizing the

individual-parameter evaluation approach would not

be appropriate. In addition, distinguishing good fore-

casts from poor ones by comparing track, intensity,

and size forecast error or skill, separately, is quite

subjective. Another issue that should receive attention

is that the traditional assessment approach does not

provide the verification information of TC trajectory

(track shape or moving direction) due to its one-

dimensional metrics. The TC trajectory has a direct

and important effect on the life of residents living near

the coast as well as ships sailing at sea. For example,

failing to predict a hurricane landfall as a result of an

incorrect moving direction forecast will likely result in

life and property losses.

In this study, an intensity-weighted hurricane

track density function (IW-HTDF) is designed as a

new evaluation criterion for assessing TC forecasts.

This method combines hurricane track, intensity, and

size data into a single parameter. It uses the con-

cept of a cyclone track density field first proposed

by Anderson and Gyakum (1989) to transform the

one-dimensional track, intensity, and size into a two-

dimensional field to obtain a single assessment score. It

should be noted that although it is possible to create a

single error (or skill score) parameter by simply com-

bining track, intensity, and size forecast errors (or skill

scores), it is a nontrivial task as the three parameters

are of different dimensions. Furthermore, a simple

combination of track, intensity, and size forecast errors

(or skill score) does not provide an assessment of

track shape.

The primary objective of this study is to introduce

an integrated approach to assessing TC track, in-

tensity, and size forecasts. The rest of the paper is

organized as follows. Section 2 gives a description of

the construction of IW-HTDF. A structural similarity

(SSIM) index based on the comparison of observed

and predicted IW-HTDFs is introduced as an in-

tegrated track, intensity, and size forecast score (IW-

HTDF score) for assessing Official NHC forecasts

(OFCL). The test results of the IW-HTDF approach

and comparisons with the traditional evaluation cri-

terion are given in section 3, followed by a discussion

in section 4 and conclusions in section 5.

2. IW-HTDF assessment

Track, intensity, and size are the main characters of

TCs and are used as the assessment variables in

evaluating TC forecasts or numerical model perfor-

mance on TC forecasts. The commonly adopted

evaluation approach is based on assessing individual

parameters separately, which may result in an in-

consistent assessment, as discussed in the previous

section. The motivation for the proposed new ap-

proach is to find a more concise way to assess TC

forecasts or the performance of TC forecast models

or methods. The IW-HTDF assessment approach

contains two steps: construction of the IW-HTDF

and evaluation of its applicability to TC forecast

assessments.

a. Construction of the IW-HTDF

The IW-HTDF, which is a time–space function

converting track, intensity, and size data from discrete

hurricane data into a regularly gridded two-

dimensional field in time and space, is derived from

the work of Anderson and Gyakum (1989). They

proposed a cyclone track density field to study the

interannual and intraseasonal track variability of cold

season extratropical cyclones in the Pacific basin. Xie

et al. (2005) defined an HTDF based on the cyclone

track density field of Anderson and Gyakum to ana-

lyze the spatial and temporal variability of North

Atlantic hurricane tracks. Keith and Xie (2009)

established a statistical model for predicting Atlantic

tropical cyclone seasonal activity using an HTDF as a

predictor selection criterion. By modifying the HTDF,

which is only related to the hurricane track, the IW-

HTDF is designed for individual hurricane, in-

tegrating hurricane track, intensity, and size data.

The function is defined as

C(X, t)5 �
n

i51

W(X2X
i
, t2 t

i
) � P

i
� a

i
=�

n

i51

a
i
, (3)

where

W(DX,Dt)5
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0, otherwise;

(4)
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where Xi is defined as the position of ith observation or

forecast of a hurricane taken at time ti, and the grid point

being estimated is at position X and time t. The term

W(DX, Dt) is a weighting function for defining the space

and time smoothed hurricane track density. The spatial

resolution Sx is defined as the influence radius of a TC

and can be set to TC size. The temporal resolution is St

and is set to 24/p. The term Pi describes a hurricane

intensity weighting factor defined as the maximum wind

speed Vi at ti normalized by the historical hurricane

maximum wind speed Vhis (which is set to 160 kt, where

1 kt 5 0.51ms21, the peak sustained wind speed of

Hurricane Wilma in 2005). We set ai as a weighted av-

erage coefficient.

IW-HTDF describes TC track, intensity, and size in

time and space through the term W(DX, Dt), the term

Pi, and the parameter Sx, respectively, and provides a

specific value of the perceived effects of a hurricane on

its surroundings. To assess an integrated TC forecast

over a specific forecast cycle, IW-HTDF can be in-

tegrated by time throughout the forecast cycle to

obtain a two-dimensional space field Cint(X):

C
int
(X)5 �

n

j51

C(X, t
j
). (7)

An example of this integrated field is shown in Fig. 1,

which provides the accumulated IW-HTDF (Sx is set to

160nmi; 1nmi5 1.852km) results [obtained fromEq. (7)]

integrated over the life of Hurricane Edouard (2014) using

the 48-h OFCL forecast (Fig. 1a) and the best-track

data (Fig. 1b). The accumulated IW-HTDF field can be

considered to be the spatial distribution of the potential

influence of a hurricane. Large values appear in places

closer to the track. Moreover, the value of the integrated

IW-HTDF is higher in the area where the hurricane

moves at a slower speed.

b. Comparison algorithm

As shown in Fig. 1, the integrated IW-HTDF fields

depict the spatial pattern of the TC track, weighted by

storm intensity and size. The question then is how to

compare the two-dimensional IW-HTDF fields between

the forecast and the best track. Several methods have

been proposed for quantitative spatial verification (e.g.,

Gilbert 1884; Ebert and McBride 2000; Casati et al.

2004; Wang et al. 2004; Davis et al. 2006; Roberts and

Lean 2008). In this study, we chose the SSIM (Wang

et al. 2004) as a concise score to assess the IW-HTDF

fields of TC forecasts. A similar method, known as the

fractions skill score (FSS) and defined by Roberts and

Lean (2008), can also be used for reference in the

quantitative spatial verification of IW-HTDF fields. The

FFS and its assessment results of IW-HTDF fields are

described in the appendix.

Wang et al. (2004) proposed the SSIM for image

quality assessment under the assumption that the human

visual perception system is adapted for extracting struc-

tural information from a scene, which is widely used in

the field of image and video quality assessment (Allam

and Abdel-Ghaffar 2004; Coskun and Sankur 2004;

Chikkerur et al. 2011). The two-dimensional IW-HTDF

fields with attributes of luminance, contrast, and structure

FIG. 1. Hurricane period integrated IW-HTDF result of Hurricane Edouard (2014), calculated through (a) 48-h

OFCL data and (b) best-track data. The black line with crosses in (a) is the 48-h OFCL track; the red line with

asterisks in (b) is the best track.
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are similar to image signals; therefore, SSIM is applicable

in the assessment of IW-HTDF fields and can provide a

comprehensive score that is useful in the verification of

the performance of a numerical weather forecast model.

In this study, SSIM is introduced as the following. A

function for luminance comparison of two two-

dimensional fields (X and Y) is defined:

L(X,Y)5
2m

X
m
Y
1C

1

m2
X 1m2

Y 1C
1

, (8)

where X and Y denote integrated IW-HTDF from TC

forecasts and observations, respectively. The mean

values of X and Y are mX and mY :

m
X
5

1

N
�
N

i51

X
i

and (9a)

m
Y
5

1

N
�
N

i51

Y
i
. (9b)

Then, a contrast comparison function is introduced:

C(X,Y)5
2s

X
s
Y
1C

2

s2
X 1s2

Y 1C
2
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where sX and sY are the standard deviations ofX andY,

s
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Y
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Further, a structure comparison function is defined as

S(X ,Y)5
s
XY

1C
3

s
X
s
Y
1C

3

, (12)

where sXY is the covariance of X and Y:

s
XY

5
1

N2 1
�
N

i51

(X
i
2m

X
)(Y

i
2m

Y
) . (13)

Additionally, C1, C2, and C3 are all small constants that

are included to avoid instability when m2
X 1m2

Y ,

s 2
X 1s2

Y , or sXsY is close to 0.

Finally, the SSIM index betweenX andY is defined as

SSIM(X ,Y)5 [L(X,Y)]a � [C(X,Y)]b � [S(X ,Y)]g,

(14)

where a, b, and g are positive parameters used to adjust

the relative importance of the three components (i.e.,

L, C, and S). In this study, we set a5b5 g5 1, for

simplicity.

The structure component S(X, Y) is the correlation

coefficient between X and Y, which measures the degree

of linear correlation between X and Y, and has a theo-

retical range from 21 to 1. The best value, 1, is obtained

whenY5 aX1 b, where a and b are constants and a. 0.

Theoretically, as shown in Fig. 2d, if the track error is large

enough (e.g.,.130nmi in Fig. 2d), the S termwill become

negative, and the confidence level will not exceed 90%.

We consider this forecast to be very poor and to have no

skill. Therefore, for those forecasts whose correlation co-

efficients between the predicted and observed IW-HTDF

fields are negative or the confidence levels do not exceed

90%, we set S 5 0. Even if X and Y are linearly related,

there still might be relative distortions between them,

which are evaluated in the components of L(X, Y) and

C(X,Y). The luminance componentL(X,Y), with a value

range of [0, 1], measures how close the mean luminance is

between X and Y. The value 1 is gained if and only if

X 5 Y (i.e., mX 5mY). The terms sX and sY can be

viewed as an estimate of the contrast of X and Y, re-

spectively, so the contrast component C(X, Y) measures

how similar the contrasts of the two-dimensional fields are.

C(X, Y) also has a value range of [0, 1], where the best

value, 1, is achieved if and only if sX 5 sY . The SSIM

index gives a score (the IW-HTDF score) that measures

how well the integrated track, intensity, and size forecasts

perform compared with the best-track data or observa-

tions, and its range is [0, 1]. A perfect forecast (i.e.,X5Y)

has a score of 1. The relationship between the IW-HTDF

score andmore conventional qualitymetrics (e.g., errors in

track, intensity, and size) is introduced in section 2c.

c. Idealized examples

Figure 2 shows an idealized situation in which a hur-

ricane, moving to the north, with an intensity of 140kt

and a size of 160 nmi, is predicted with different track

errors. The intensities, sizes, and moving directions of

the ‘‘observed’’ and ‘‘forecast’’ hurricanes are identical;

only the distance between them varies. The forecast in

Fig. 2a with a relatively small track error of 32.4 nmi,

obtains a relatively high IW-HTDF score of 0.89. The

forecast in Fig. 2c, with a relatively large track error of

120.7 nmi, receives a low IW-HTDF score of 0.07.

Figure 2d depicts the curves of three components of

SSIM (i.e., L, C, and S) and the IW-HTDF score in this

idealized situation. The luminance L and contrast C

components are the same and constant (both equal to 1),

while the structure component S decreases from 1 to

0 with the track error. So, the IW-HTDF score has the

same curve with S. The smaller the track forecast error,

the higher the IW-HTDF score.
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For the other idealized example, the track errors

(32.4 nmi), sizes (160 nmi), and moving directions

(north) of the observed and forecast hurricanes are

identical; only the intensity between them varies.

Figure 3a shows that the structure component S is con-

stant, unaffected by the intensity error; while the lumi-

nance and contrast components decrease as the intensity

error increases in this idealized situation. So the IW-

HTDF score is lower with larger intensity error.

As shown in Fig. 3b, all of the three SSIM components

(i.e., L, C, and S) as well as the IW-HTDF score obtain

lower values with larger size error in the idealized situ-

ation in which the track errors (32.4 nmi), intensities

(140 kt), and moving directions (north) of the observed

and forecast hurricanes are identical; only the size be-

tween them varies. It is also clearly seen that the struc-

ture term S decreases slowly (compared with L and C)

with size error in this idealized situation.

3. Experimental results

In this study, we apply the new IW-HTDF assessment

approach to evaluate the 48-h hurricane forecasts from

OFCL, and compare the results with those from the

traditional individual-parameter evaluation method.

NHC has been issuing forecasts of hazardous tropical

weather such as hurricanes and tropical storms since

1954. NHC utilizes several models [e.g., GFDL, HWRF,

the GFS Aviation Ontime (AVNO), SHIPS] as guid-

ance during the preparation of official track and in-

tensity forecasts. The official forecasts contain intensity

(i.e., maximum 1-min surface wind speed), central

pressure, position (i.e., latitude and longitude of storm

center), and size (i.e., the maximum extent of winds of

34, 50, and 64kt in each of the four quadrants about

the center) of tropical or subtropical cyclones. These

forecasts are issued every 6 h (at 0300, 0900, 1500, and

2100 UTC), and each contains projections valid for

12, 24, 36, 48, 72, 96, and 120 h after the forecast’s

nominal initial time (i.e., 0000, 0600, 1200, and 1800UTC).

These data are available from the Automated Tropical

Cyclone Forecast System (ATCF).

The best-track dataset created by NHC, used as the

benchmark by both the IW-HTDF assessment approach

and individual-parameter evaluation method, is a post-

storm analysis of each tropical cyclone’s intensity,

FIG. 2. Idealized situation in which a hurricane, moving to the north, with an intensity of 140 kt and a size of

160 nmi, is predicted with different track errors: (a) 32.4, (b) 73.0, and (c) 120.7 nmi. (d) The solid lines with

different icons show the variations of three components of SSIM (i.e., L, C, and S) and the IW-HTDF score in the

idealized situation, and the dashed line is the curve of the correlation coefficient between the observed and forecast

integrated IW-HTDF fields.
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central pressure, position, and size (Jarvinen et al. 1984;

Landsea and Franklin 2013). This analysis makes use of

all available observations, including those that may not

have been available in real time. This dataset contains

6-hourly information on the location, maximum wind,

central pressure, and size of all known tropical cyclones

and subtropical cyclones. Because wind radii were not

included in the poststorm best-track database until 2004,

tropical cyclones from 2004 to 2015 were chosen to

construct the IW-HTDF on a 0.28 gridded domain.

During this period, there were 193 tropical cyclones,

including 15 tropical depressions, 91 tropical storms, and

87 hurricanes generated in the Atlantic. One of the

significant properties of IW-HTDF is the asymmetrical

wind structure of tropical cyclones, so we only con-

sider ‘‘hurricane’’ cases that have a well-defined eye and

four-quadrant wind radius data. Finally, for statistical

significance, we chose 54 hurricane cases whose active

periods were the same (consistent) between the 48-h

OFCL forecast results and the baseline data (best track),

and longer than 24h.

a. Assessing track, intensity, and asymmetric size

In the first experiment, Sx is defined as the influence

radius of a hurricane and set to 34-kt wind radii in four

quadrants (i.e., northeast, southeast, southwest, and

northwest) surrounding the hurricane as shown in

Fig. 4a. Based on the traditional individual-parameter

assessment approach, errors in track, intensity, and 34-kt

wind radii in four quadrants (hereafter, asymmetric size)

are used to evaluate the forecast results of the 54 hur-

ricane cases. The results show that track forecast errors

FIG. 3. The curves of three components of SSIM (i.e., L, C, and S) and the IW-HTDF score in the idealized

situations: (a) in which a hurricane, moving to the north, with a track error of 32.4 nmi and size of 160 nmi, is

predicted with different intensity errors, and (b) in which a hurricane, moving to the north, with track error of

32.4 nmi and intensity of 140 kt, is predicted with different size errors.

FIG. 4. Hurricane Edouard (2014) influence radius of (a) experiment 1, where Sx is set to 34-kt wind radii in four quadrants (i.e.,

northeast, southeast, southwest and northwest) surrounding the hurricane; (b) experiment 2, where Sx is set to the maximum extent of the

34-kt wind radius; and (c) experiment 3, where Sx is set to a constant 160 nmi.
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range from 27.1 to 195.6 nmi with an average error of

74.4 nmi; intensity forecast errors range from 2.5 to

31.1 kt with a mean value of 13.9 kt, and errors in

asymmetric size range from 48.6 to 389.0 nmi with an

average of 117.2 nmi. IW-HTDF scores of the 54 hur-

ricane cases have a range from 0.00 to 0.94, and themean

value is 0.59. Table 1 lists Pearson correlation co-

efficients r between IW-HTDF scores and each com-

ponent error: track, intensity, and asymmetric size error,

as well as the total product of three normalized errors.

Note that errors in track, intensity, and size cannot be

summed or averaged directly because of their differ-

ences in dimensions. Therefore, the product of the

normalized errors in track, intensity, and size is used as

the overall error of a hurricane forecast for comparison.

Normalized error is defined as the error divided by the

maximum error. Theoretically, a negative correlation

exists between the skill score and the forecast error. The

coefficients in Table 1 show that the IW-HTDF score

and each component error as well as the product of the

normalized errors are all negatively correlated (r , 0).

Moreover, the IW-HTDF score and track error have a

relatively close correlation (r 5 20.67, p , 0.05) com-

pared with intensity error (r520.27, p, 0.05) and size

error (r 5 20.21, p . 0.05).

To make a detailed comparison between the new IW-

HTDF assessment approach and the traditional evalu-

ation method, we divide 54 hurricane cases into four

zones—A1, B1, C1, and D1—based on the average er-

rors of the storm track and intensity, as shown in Fig. 5.

TABLE 1. Pearson correlation coefficients r between IW-HTDF scores in three experiments and for each component error, i.e., track,

intensity, asymmetric size (34-kt wind radii in four quadrants), and symmetric size (maximum34-kt wind radii) error, as well as the product

of the normalized errors. Values of r with p , 0.05 are shown in boldface. Here, p , 0.05 is the traditional indicator of statistical

significance. The product of the normalized errors is calculated bymultiplying normalized errors in track, intensity, and size by each other.

(In experiment 3, only the track and intensity normalized errors are multiplied by each other to calculate the product of normalized

errors.)

Coeff r IW-HTDF score in expt 1 IW-HTDF score in expt 2 IW-HTDF score in expt 3

Track error 20.67 20.64 20.78

Intensity error 20.27 20.26 20.21

Asymmetric size error 20.21 — —

Symmetric size error — 20.23 —

Product of normalized errors 20.42 20.38 20.59

FIG. 5. Track forecast error and intensity forecast error. Circles show track and intensity forecast

errors are both under the average errors; triangles show track forecast errors are under the average

track error, but intensity forecast errors are above the average intensity error; diamonds show track

and intensity forecast errors are both above the average errors; squares show track forecast errors

are above the average track error, but intensity forecast errors are under the average intensity

error. The total sample quantity is 54, and the number of analyzable samples (icons filledwith gray)

that are beyond the scope of the track and intensity error uncertainty is 29.
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Meanwhile, because of the best-track uncertainty, which

was estimated to be about 14.9 nmi for track and 9.1 kt

for intensity (Landsea and Franklin 2013), hurricanes

with forecast errors close to the average errors are not

analyzed to avoid confusion. Therefore, 29 hurricane

cases are obtained for analysis. Then, each zone (e.g.,

A1, B1, C1, D1) is divided into two parts based on the

average error of the asymmetric sizes to form eight

subzones: Ab, Aa, Bb, Ba, Cb, Ca, Db, and Da (subscript

b or a represents the asymmetric size errors of hurricane

cases are below or above the average value). Because of

the limited number of available hurricane cases, hurri-

cane cases whose size errors are close to the mean value

are not removed. Finally, a total of 29 hurricanes that are

beyond the scope of the track and intensity error un-

certainty are analyzed in this study. Subzone Ab de-

scribes hurricanes whose forecast errors in track,

intensity, and asymmetric size are all less than the av-

erage errors, meaning a good forecast zone. Subzone Ca,

as opposed to Ab, is a poor forecast zone with each

component error above the average error. The remain-

ing subzones (i.e., Aa, Bb, Ba, Cb, Db, and Da) contain

hurricanes whose forecast errors in track, intensity, and

asymmetric size are mixed, depicting inconsistent fore-

cast zones. For instance, subzone Aa shows only one

hurricane (case Aa_1 in Fig. 6) whose track and intensity

forecast errors (45.6 nmi, 7.1 kt) are both below the

average errors (74.4 nmi, 13.9 kt), but the error of the

asymmetric size (256.7 nmi) is above the average error

(117.2 nmi).

Figure 6 presents the IW-HTDF assessment scores

and the forecast errors in track, intensity, and asym-

metric size of the 29 analyzed hurricane cases in the

eight subzones. In the traditional good forecast zone

Ab, the hurricane cases’ IW-HTDF scores are all

above the average IW-HTDF score (0.59). For exam-

ple, case Ab_1 (Hurricane Jeanne, 2004), obtains a

relatively high IW-HTDF score of 0.86, and its forecast

errors in track, intensity, and asymmetric size are

45.4 nmi (,74.4 nmi), 7.1 kt (,13.9 kt), and 61.8 nmi

(,117.2 nmi), respectively. On the contrary, in the

traditional poor forecast zone Ca, all the hurricane

IW-HTDF scores are below the average IW-HTDF

score. For instance, case Ca_3 (Hurricane Epsilon, 2005)

earns a low IW-HTDF score of 0.07 with forecast er-

rors of 113.7 nmi (track), 30.6 kt (intensity), and

FIG. 6. Errors in track, intensity, and 34-kt wind radii maximum extent in four quadrants and the IW-HTDF scores of experiment 1 in the

zones Ab, Aa, Bb, Ba, Cb, Ca, Db, and Da.

JUNE 2017 ZHANG ET AL . 977

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:40 PM UTC



153.8 nmi (asymmetric size). In the inconsistent zones

Bb, Cb, Db, and Da, hurricane cases receive in-

between IW-HTDF scores. For example, case Db_1

(Hurricane Ivan, 2004) earns a 0.55 IW-HTDF score,

with forecast errors of 98.2 nmi (track), 8.6 kt (in-

tensity), and 112.3 nmi (asymmetric size). Meanwhile,

hurricane cases in traditional inconsistent zones Aa

and Ba have different results, earning relatively high

IW-HTDF scores like those located in good forecast

zone Ab. The reason for this will be discussed in sec-

tion 4. In the subzone Cb, case Cb_2 (Hurricane Omar,

2008) obtains a zero score, mainly because of the very

high track error (195.6 nmi), which results in only a

small overlap between the observed and forecast in-

tegrated IW-HTDF fields (overlap rate 35.5%, which

is defined as the percentage of overlap grid points

between the observed and forecast IW-HTDF fields

divided by the total points) and a value of 0 for the S

term in SSIM.

On average (Table 2), hurricanes located in zone Ab

with smaller forecast errors (i.e., errors in track, intensity,

and asymmetric size) earn a high mean IW-HTDF score

of 0.75. The hurricanes located in zone Ca with larger

forecast errors obtain a low mean IW-HTDF score of

0.25. Additionally, hurricanes in the inconsistent forecast

zones Bb, Cb, Db, and Da, earn moderate IW-HTDF

scores of 0.64, 0.27, 0.62, and 0.55, respectively. Hurri-

canes in the inconsistent forecast zones Aa and Ba obtain

relatively high mean IW-HTDF scores of 0.82 and 0.90,

respectively.

b. Assessing track, intensity, and symmetric size

In some practical applications, the maximum 34-kt

wind radius is appropriate for describing the hurricane

size. So, in the second experiment, Sx is set to the max-

imum 34-kt wind radius (hereafter, symmetric size)

which is symmetric and changes over time, as shown in

Fig. 4b. Symmetric size errors of the 54 cases selected in

this study range from 0 to 125nmi, and themean value is

32.6 nmi. IW-HTDF scores range from 0.12 to 0.95, the

mean value is 0.67. The Pearson correlation coefficients

between the IW-HTDF score and each component error

are all negative (shown in Table 1), similar to results

obtained in experiment 1. The IW-HTDF score and

track error have a relatively close correlation compared

with the intensity and size error (r 5 20.64, p , 0.05),

and the total product of the normalized error and IW-

HTDF score is significantly correlated with r 5 20.38

and p , 0.05.

The 29 hurricane cases extracted during the first ex-

periment are also divided into eight subzones (i.e., Ab,

Aa, Bb, Ba, Cb, Ca, Db, and Da) by the mean error of the

symmetric size. Figure 7 presents the IW-HTDF as-

sessment scores, forecast errors in track, intensity, and

symmetric size of these analyzed hurricane cases in the

eight subzones. In the traditional good forecast zone

Ab, all the hurricane cases obtain relatively high IW-

HTDF scores. For example, the case Ab_6 (Hurricane

Edouard, 2014) IW-HTDF score is 0.89, and its forecast

errors are 40.8 nmi (track), 9.4 kt (intensity), and

23.1nmi (symmetric size). In contrast, in the traditional

poor forecast zone Ca all the hurricane IW-HTDF

scores are relatively low. For instance, case Ca_1

(Hurricane Alex, 2004) receives a low IW-HTDF

score of 0.35, with forecast errors of 161.5 nmi

(track), 27.0 kt (intensity), and 125.0 nmi (symmetric

size). In the inconsistent zones Aa, Bb, Cb, Db, and Da,

hurricane cases receive moderate IW-HTDF scores.

Such as case Bb_5 (Hurricane Danny, 2015) whose

IW-HTDF score is 0.68, and the forecast errors in

track, intensity, and symmetric size are 53.7 nmi,

19.4 kt, and 20.0 nmi, respectively. On the other hand,

hurricane cases in inconsistent zone Ba have differ-

ent results, earning relative high IW-HTDF scores

like those located in good forecast zone Ab. This

inconsistent result was also obtained in the first

TABLE 2. Average track forecast error, average intensity forecast error, average asymmetric size (34-kt wind radii in four quadrants)

error, and average IW-HTDF score in experiment 1 of hurricanes located in zones Ab, Aa, Bb, Ba, Cb, Ca, Db, and Da. The ranges of these

parameters are given within parentheses.

Zone Ab Zone Aa Zone Bb Zone Ba

Track error (nmi) 47.6 (35.3–65.9) 40.8 45.6 (27.1–58.8) 62.9 (60.8–65.0)

Intensity error (kt) 6.9 (2.5–9.4) 7.1 22.4 (19.4–25.0) 20.4 (20.0–20.8)

Asymmetric size error (nmi) 88.2 (58.3–111.3) 256.7 74.4 (52.5–84.4) 124.3 (118.9–129.6)

IW-HTDF score 0.75 (0.62–0.88) 0.82 0.64 (0.42–0.75) 0.90 (0.89–0.91)

Zone Cb Zone Ca Zone Db Zone Da

Track error (nmi) 144.2 (102.4–195.6) 112.7 (85.4–161.5) 103.9 (98.2–109.6) 108.9 (90.5–123.1)

Intensity error (kt) 21.5 (19.2–25.8) 28.4 (25.0–31.1) 7.6 (6.7–8.6) 5.7 (3.8–6.8)

Asymmetric size error (nmi) 75.2 (61.7–88.3) 227.8 (141.2–389.0) 94.5 (76.7–112.3) 142.8 (122.5–196.8)

IW-HTDF score 0.27 (0–0.41) 0.25 (0.07–0.44) 0.62 (0.55–0.69) 0.55 (0.47–0.76)
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experiment. The reason is the same and will be dis-

cussed in section 4.

On average (Table 3), hurricanes located in zone Ab

with smaller forecast errors in track, intensity, and

symmetric size earn a high mean IW-HTDF score of

0.82. The hurricanes located in zone Ca with larger

forecast errors obtain a low mean IW-HTDF score of

0.40. Hurricanes in the inconsistent forecast zones Aa,

Bb, Db, andDa earn in-betweenmean IW-HTDF scores:

0.76, 0.76, 0.68, and 0.63, respectively. Hurricanes in the

inconsistent forecast zone Ba (Cb) receive a relatively

high (low) mean IW-HTDF score of 0.91 (0.35).

c. Assessing track and intensity only

It should be noted that actual observations and best-

track data of TC size are very limited, having very large

room for improvement (Landsea and Franklin 2013),

and so are the estimations of TC size forecasts.

Therefore, including TC size as a forecast evaluation

parameter is exploratory at the present. The proposed

FIG. 7. Errors in track, intensity, and maximum 34-kt wind radii and the IW-HTDF scores of experiment 2 in the zones Ab, Aa, Bb, Ba, Cb,

Ca, Db, and Da.

TABLE 3. As in Table 2, but for experiment 2.

Zone Ab Zone Aa Zone Bb Zone Ba

Track error (n mi) 48.5 (39.2–65.9) 43.5 (35.3–54.2) 45.6 (27.1–58.8) 62.9 (60.8–65.0)

Intensity error (kt) 8.3 (7.1–9.4) 4.1 (2.5–7.1) 22.4 (19.4–25.0) 20.4 (20.0–20.8)

Symmetric size error (n mi) 22.3 (13.3–28.8) 61.5 (33.8–115.0) 15.4 (3.8–28.0) 41.6 (40.6–42.6)

IW-HTDF score 0.82 (0.64–0.94) 0.76 (0.74–0.80) 0.76 (0.66–0.83) 0.91 (0.91–0.91)

Zone Cb Zone Ca Zone Db Zone Da

Track error (n mi) 126.3 (85.4–195.6) 125.9 (90.4–161.5) 107.4 (98.2–116.9) 106.8 (90.5–123.1)

Intensity error (kt) 24.0 (19.2–30.6) 29.1 (27–31.1) 6.9 (5.6–8.6) 5.3 (3.8–6.8)

Symmetric size error (n mi) 18.9 (10.0–31.3) 96.1 (67.2–125.0) 24.4 (20–26.7) 49.5 (40.0–59.1)

IW-HTDF score 0.35 (0.12–0.59) 0.40(0.35–0.44) 0.68 (0.61–0.77) 0.63 (0.42–0.84)
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integrated IW-HTDF can be reduced for track forecast

separately or in combination with intensity and size

parameters. In the third experiment, we assess track

and intensity forecasts without dealing with size fore-

casts by setting Sx to a constant of 160 nmi.

As shown in Fig. 5, 29 analyzed hurricane cases are

divided into four zones—A1, B1, C1, and D1—based on

the average errors of track and intensity. Zone A1 de-

scribes hurricanes whose track and intensity forecast

errors are both below the average errors, meaning it is a

good forecast zone. Conversely, zone C1 describes

hurricanes whose forecast errors of track and intensity

are both above the average errors, meaning this is a poor

forecast zone. Zone B1 (D1) describes hurricanes whose

track forecast errors are below (above) the average

track error but whose intensity forecast errors are above

(below) the average intensity error, meaning this is an

inconsistent forecast zone.

To further examine the forecast skill for each indi-

vidual hurricane, the IW-HTDF scores are plotted for

all 29 hurricanes (Fig. 8). The IW-HTDF scores in the

third experiment range from 0.10 to 0.91, and the mean

value is 0.65. Pearson correlation coefficients (Table 1)

show that IW-HTDF score and track error have a rel-

atively close correlation compared with intensity error

(r 5 20.78, p , 0.05). And the total product of the

normalized errors (in track and intensity) and the

IW-HTDF score is significantly correlated with

r 5 20.59 and p , 0.05. In the traditional good fore-

cast zone A1, all the hurricane cases obtain relatively

high IW-HTDF scores. For example, case A1_4 (Hur-

ricane Michael, 2012) receives the highest IW-HTDF

score of 0.91 with forecast errors of 39.2 nmi (track)

and 9.3 kt (intensity). All of the seven hurricanes lo-

cated in zone C1 (the poor forecast zone) receive lower

IW-HTDF scores than the mean IW-HTDF score. For

instance, case C1_3 (Hurricane Rita, 2005) earns a low

IW-HTDF score of 0.20 with a track forecast error of

102.4 nmi, and an intensity forecast error of 19.4 kt. In

the inconsistent zones B1 and D1, hurricane cases re-

ceive in-between IW-HTDF scores. However, hurri-

canes located in zone B1 obtain relatively higher

IW-HTDF scores than those located in zone D1. For

example, case B1_5 (Hurricane Rina, 2011) located in

zone B1 earns an IW-HTDF score of 0.87, with a track

forecast error of 27.1n mi and an intensity forecast

error of 25.0 kt, while D1_6 (Hurricane Cristobal,

2014) located in zone D1 obtains a low IW-HTDF

score 0.38 and its forecast errors in track and intensity

are 105.1 nmi and 5.5 kt. The reason will be discussed

in section 4.

On average (Table 4), hurricanes located in good

forecast zone A1 obtain a high mean IW-HTDF score of

0.81, while hurricanes located in poor forecast zone C1

obtain a low mean IW-HTDF score of 0.34. The mean

IW-HTDF scores of hurricanes located in inconsistent

zones B1 and D1 are 0.77 and 0.50, respectively. These

results are consistent with the expectation that when

both track and intensity forecast errors are low (high),

the IW-HTDF scores are high (low), and when the track

FIG. 8. Errors in track, intensity, and IW-HTDF scores of experiment 3 in the zones A1, B1, C1, and D1.
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and intensity forecast errors are inconsistent, the IW-

HTDF scores are in between.

In addition to forecast errors, forecast skill is an al-

ternative measure used widely to assess hurricane

forecasts. Figure 9 presents the track forecast skill

relative to CLIPER5 and intensity forecast skill rela-

tive to Decay-SHIFOR5 of the official NHC forecast

for the 29 analyzed hurricane cases. Track forecast skill

levels range from 211.4% to 89.0%, and the average

skill is 60.0%. Intensity forecast skill levels range

from 2132.6% to 78.7%, and the mean value is 15.6%.

Figure 9 is divided into four zones (A2, B2, C2, andD2)

based on the average track skill and average intensity

skill. Zone A2 describes hurricane cases whose track

and intensity forecast skills are both above the average

skill. On the contrary, zone C2 includes cases when

track and intensity forecast skill levels are both below

the average. Zone B2 (D2) describes hurricane cases

whose track forecast skill levels are above (below) the

average skill, but intensity forecast skill levels are be-

low (above) the average.

Figure 10 shows the IW-HTDF scores of the 29 ana-

lyzed hurricane cases located in the four zones: A2, B2,

C2, and D2. On average (Table 5), hurricane cases lo-

cated in zone A2 have a high mean IW-HTDF score of

0.79, while hurricanes located in zone C2 have a low

mean IW-HTDF score of 0.47. And the mean IW-

HTDF scores of hurricane cases located in zone B2

and D2 are 0.60 and 0.49, respectively. There are 11

hurricane cases located in zone A2 (the good forecast

zone), producing higher IW-HTDF scores than the

mean IW-HTDF score. Case A2_4 (Hurricane Michael,

TABLE 4. Average track forecast error, average intensity forecast error, and average IW-HTDF score in experiment 3 of hurricanes

located in zones A1, B1, C1, and D1. The ranges of these parameters are given within parentheses.

Zone A1 Zone B1 Zone C1 Zone D1

Track error (n mi) 46.8 (35.3–65.94) 50.5 (27.1–65.0) 126.2 (85.4–195.6) 107.2 (90.5–123.0)

Intensity error (kt) 6.9 (2.5–9.4) 21.9 (19.4–25.0) 25.5 (19.2–31.1) 6.3 (3.8–8.6)

IW-HTDF score 0.81 (0.65–0.91) 0.77 (0.69–0.87) 0.34 (0.10–0.57) 0.50 (0.31–0.69)

FIG. 9. Track forecast skill relative to CLIPER5 and intensity forecast skill relative toDecay-

SHIFOR5. Circles show track and intensity forecast skill levels are both above the average;

triangles show track forecast skill levels are above the average track skill, but intensity forecast

skill levels are below the average intensity skill; diamonds show that the track and intensity

forecast skill levels are both below the average skill; and squares show track forecast skill levels

are below the average track skill, but intensity forecast skill levels are above the average

intensity skill.
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2012) earns the highest IW-HTDF score of 0.91, with a

track forecast skill of 82.1% and an intensity forecast

skill of 24.2%. In zone C2 (the poor forecast zone),

hurricane cases obtain relatively low IW-HTDF scores.

For example, zone C2_3 (Hurricane Epsilon, 2005)

earns a low IW-HTDF score of 0.15, with forecast skill

levels of 57.5% (track) and 221.3% (intensity). There

are four hurricanes located in zone B2, which means

better track forecast skill and poorer intensity forecast

skill. Overall, cases in B2 received relatively high

IW-HTDF scores, such as B2_3 (Hurricane Rina, 2011),

whose IW-HTDF score is 0.87, and forecast skill levels

in track and intensity are 72.2%,2132.6%, respectively.

While the other two hurricanes obtain relatively lower

IW-HTDF scores, such as case B2_5 (Hurricane Omar,

2008), whose IW-HTDF score is 0.10, the track forecast

skill is 70.66% and the intensity forecast skill is227.7%.

In zone D2, which suggests poorer track forecast skill

and better intensity forecast skill, five out of seven hur-

ricanes earn relatively low IW-HTDF scores compared

with the mean IW-HTDF score. For example, D2_7

(Hurricane Ivan, 2004) receives a low IW-HTDF score of

0.31 with a track forecast skill of 19.1% and an intensity

forecast skill of 30.6%.

Analogous to the traditional assessment method

performed by assessing track and intensity forecast skill

levels, IW-HTDF skill scores of most hurricanes located

in zone A2 indicate that those hurricane forecasts are

‘‘good,’’ and IW-HTDF scores in zone C2 indicate that

those hurricane forecasts are ‘‘poor.’’ Meanwhile, hur-

ricane cases in zones B2 and D2, where individual track

and intensity forecasts contradict each other, receive

mixed IT-HTDF scores between those in zones A2

and C2.

d. Assessing OFCL forecasts at different forecast
hours

In this study, the IW-HTDF scores of OFCL fore-

casts at different forecast times (i.e., 12, 24, 36, 48, 72,

96, and 120 h) are calculated to test the feasibility of the

FIG. 10. Track and intensity forecast skill levels and IW-HTDF scores in the zones A2, B2, C2, and D2.

TABLE 5. As in Table 4, but for zones A2, B2, C2, and D2.

Zone A2 Zone B2 Zone C2 Zone D2

Track forecast skill (%) 75.7 (61.1–84.6) 73.7 (61.2–89.0) 51.2 (42.4–57.5) 29.6 (from 211.4 to 53.5)

Intensity forecast skill (%) 46.4 (24.2–78.7) 223.8 (from 2132.6 to 12.3) 223.5 (from 262.0 to 11.8) 28.9 (18.8–45.0)

IW-HTDF score 0.79 (0.65–0.91) 0.60 (0.10–0.87) 0.47 (0.15–0.78) 0.49 (0.20–0.77)
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IW-HTDF assessment approach in evaluating the

performance of the TC numerical forecast models.

Figure 11 shows the mean IW-HTDF scores of OFCL

forecasts at each forecast time: 12, 24, 36, 48, 72, 96, and

120 h. In each experiment, 12-h OFCL forecasts earn

the highest mean IW-HTDF score, and the mean

IW-HTDF score decreases with increasing forecast

time as a result of the increasing forecast errors in

track, intensity, and size (shown in Fig. 12). These re-

sults are consistent with the expectation that the per-

formance of numerical forecast models degrades over

time. The difference in the IW-HTDF scores between

experiments 1 and 2 versus experiment 3 increases with

forecast time, which is somehow related to the influ-

ence of size. In experiment 3, only track and intensity

are considered, while in experiments 1 and 2, in addi-

tion to track and intensity, the size is also regarded as a

factor on the IW-HTDF score. On one hand, the ad-

ditional size error makes a contribution to the lower

IW-HTDF scores in experiments 1 and 2 than that in

experiment 3 (at forecast times of 12, 24, and 36 h in

experiment 1; 12 and 24 h in experiment 2). On the

other hand, the size and the overlap between the ob-

servations and the forecast have a positive influence on

the IW-HTDF score (discussed in section 4). Com-

pared with the constant Sx of 160 nmi in experiment 1,

the average maximum 34-kt wind radius increases from

145 to 172 nmi with forecast time. The differences in

the overlap rate between experiments 1 and 2 versus

experiment 3 increase from 29.6% to 0.1%, and

from 26.0% to 1.3%, respectively. Therefore, the differ-

ences in the IW-HTDF score between experiments 1 and 2

versus experiment 3 increase from negative to positive.

4. Discussion

In this study, an integrated TC track, intensity, and

size forecast evaluation parameter (IW-HTDF) has

been designed using three different forecast variable

setups. To demonstrate this new approach, we used the

IW-HTDF score (SSIM index) to assess OFCL hurri-

cane forecasts and compared the results with those of

the traditional individual-parameter evaluationmethod.

The results show that the IW-HTDF assessment ap-

proach is feasible and has some merit over the tradi-

tional individual-parameter assessment approach.

Currently, TC forecast errors, such as errors in track

and intensity, are used widely to assess TC forecast

models or methods, which can provide mixed evalua-

tion results, for instance, small track error with large

intensity error and vice versa. In this situation, some

users (e.g., modelers interested in determining a

model’s performance or untrained users) may feel

confused, and a concise and integrated assessment

score can be more useful. For example, Hurricane

Emily’s (2005) track forecast error (53.7 nmi) is below

the average error (74.4 nmi) and the intensity forecast

error (20.8 kt) is above the average error (13.9 kt). The

FIG. 11. Mean IW-HTDF score of OFCL forecasts at different forecast time: 12, 24, 36, 48, 72,

96, and 120h.Greenbars show themean IW-HTDFscore in experiment 1 setting Sx 5 asymmetric

size, red bars show the mean IW-HTDF score in experiment 2 setting Sx 5 symmetric size,

and blue bars show the mean IW-HTDF score in experiment 3 setting Sx 5 constant. (The

96- and 120-h OFCL forecasts of wind radii are unavailable, so the IW-HTDF scores in

experiment 1 and experiment 2 are not calculated.)
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forecast errors indicate that Hurricane Emily’s track

forecast is ‘‘good’’ but the intensity forecast is ‘‘poor.’’

Meanwhile Hurricane Emily’s IW-HTDF score of 0.74

(in experiment 3) is higher than the mean IW-HTDF

score of 0.65, which suggests an integrated evaluation

that the forecast is good.

There are a number of issues that are worth discussing

with regard to the IW-HTDF approach. First, it is nec-

essary to study the influence of Sx and the overlap (be-

tween the IW-HTDF fields of observations and

forecasts) on the IW-HTDF score. In experiments 1 and

2, the IW-HTDF approach seems appealing in tradi-

tional inconsistent zones. For example, hurricanes lo-

cated in zones Ba (in experiments 1 and 2) earn

relatively high IW-HTDF scores like those located in

the good forecast zone Ab, which is a result of the

monotonicity of the IW-HTDF score with Sx. As shown

in Fig. 13, IW-HTDF score increases as Sx increases. On

the other hand, the overlap between the IW-HTDF

fields of the observations and the forecast has a signifi-

cantly positive effect on the IW-HTDF score (Fig. 14).

The Pearson correlation coefficients r between the IW-

HTDF score and the overlap rate in experiments 1, 2,

and 3 are 0.83, 0.82, and 0.83, respectively, and are all

significant with p, 0.001, which indicates that these two

indices (i.e., IW-HTDF score and overlap rate) are

closely correlated. Hurricanes in zone Ba (in experi-

ments 1 and 2) have larger sizes (the mean maximum

34-kt radii are 240.5 and 240 nmi, respectively) and

higher overlap rates (77.1% and 79.7%) than those in

good forecast zone Ab (for experiment 1, the mean

FIG. 12. (a) OFCL mean track forecast error at different forecast times. (b) OFCL mean intensity forecast error

at different forecast hours. (c) OFCL mean maximum 34-kt wind radii error at different forecast hours. (d) OFCL

mean errors of 34-kt wind radii maximum extent in four quadrants at different forecast hours. The 96- and 120-h

OFCL forecasts of wind radii are unavailable.

FIG. 13. IW-HTDF score of Hurricane Rita (2005) with different

values of Sx.
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maximum 34-kt radius is 143nmi and the overlap rate is

68.1%; for experiment 2, the mean maximum 34-kt ra-

dius is 147nmi and the overlap rate is 74.1%). In these

cases, large Sx with large overlap plays a more significant

role in determining the IW-HTDF score than the errors

of track and intensity. Therefore, these hurricanes ob-

tain relatively high scores.

Second, the current IW-HTDF score algorithm [for

simplicity, we set a5b5 g5 1 in Eq. (14) in this study]

is more sensitive to track than intensity. As shown in

Table 1, the absolute values of the correlation co-

efficients between the IW-HTDF scores and track errors

are all higher (in three experiments) than those between

the IW-HTDF scores and the intensity errors. The IW-

HTDF score increases quickly with the decrease in track

error, but increases slowly with the decrease in intensity

error. For example, as shown in Fig. 15 for Hurricane

Rita (2005), if its track forecast error improves by 50%,

the IW-HTDF score will increase by 244%.On the other

hand, if its intensity forecast error improves by 50%, the

IW-HTDF score will only increase by 1.8%. So, in the

inconsistent zones B1 and D1 (in experiment 3), though

hurricane cases receive moderate IW-HTDF scores,

hurricanes located in zone B1 obtain relatively higher

IW-HTDF scores than those located in zoneD1. Table 6

lists Pearson correlation coefficients between each

SSIM component [i.e., luminance L, contrast C, and

structure S] and each traditional forecast error (i.e.,

track, intensity, and size error) in three experiments.

The S term is significantly correlated to the track error

(r 5 20.68, 20.63, and 20.75, respectively in experi-

ments 1, 2 and 3; p, 0.05). If we consider the influence

of size in experiments 1 and 2, the L term has a close

correlation with the size error (r 5 20.62 and 20.66,

FIG. 14. IW-HTDF scores vs rates between the IW-HTDFfields of observations and forecasts in experiments 1–3 with different Sx settings,

i.e., asymmetric, symmetric and constant sizes.

FIG. 15. Variations of IW-HTDF scores with the improvements in track and intensity simulation errors of Hurri-

cane Rita (2005) during experiment 3.
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p , 0.05); and the term C is mainly affected by the in-

tensity and size. In experiment 3 without dealing with size,

the intensity error has a significant correlation with terms

L andC (r520.51 and20.51, p, 0.05), while track error

is much more closely correlated to the term S (r520.75,

p, 0.05). Therefore, it is possible to adjust the weightings

of the track, intensity, and in some cases size by setting a,

b, and g in Eq. (14) to different values.

We propose the IW-HTDF approach for assessing TC

forecasts by combining TC track, intensity, and size data

into a single parameter. Following the same idea, other

approaches may emerge. For instance, one could

construct a score function that combines forecast errors

in track, intensity, and size after assessing the forecast

error of each parameter separately. A simple weighted

combination of the track, intensity, and size error can be

designed as

err
W
5F(err

T
, err

I
, err

S
), (15)

where errT, errI, and errS are the errors in track, in-

tensity, and size, respectively, and errW is the weighted-

combined error of these three errors by some

transformation function F. It should be noted that errors

in track, intensity, and size have different dimensions

(i.e., L, L/T, L, where L is length and T is time), which

cannot be summed or averaged directly. So, a simple

form of the transformation function F can be some form

of multiplication. Meanwhile, the forecast error is a one-

dimensional parameter and cannot provide the verifi-

cation information of the TC trajectory forecast (track

shape or moving direction). In practical applications, an

accurate trajectory forecast is extremely important be-

cause of its influence on ship rerouting, hurricane land-

fall location, etc. If two TC forecasts have identical

errors in track, intensity, and size, separately, while their

trajectory forecasts are different, for example, one is

similar to the observation, whereas the other is opposite

the observation, then the simple weighted-combined

error assessment would fail to distinguish these two

forecasts from each other with the same calculated re-

sult through Eq. (15). Intuitively, the forecast with a

similar trajectory to the observation is better than the

other. The integrated IW-HTDF is a two-dimensional

field, which is derived from the track, intensity, and size

directly rather than from the errors, providing the in-

formation of the TC track pattern as well as the storm

intensity and size. Therefore, the IW-HTDF assessment

approach can provide more comprehensive verification

information containing trajectory that is not considered

in a simple weighted combination of track, intensity, and

size errors. For a specific case, as shown in Fig. 16, there

are two forecasts with the same track error of 180nmi,

but their trajectories are different. The trajectory of

forecast 1 is opposite to the reference track, while the

trajectory of forecast 2 is similar to the reference track.

To assess these two forecasts via the IW-HTDF ap-

proach, forecast 1 obtains an IW-HTDF score of 0.07,

whereas forecast 2 earns an IW-HTDF score of 0.65.

Obviously, the IW-HTDF approach shows that forecast

2 performs better than forecast 1, which is consistent

with the expectation that when the trajectory forecast is

more similar to the reference track, the track forecast is

better, while a distance error-based assessment ap-

proach like that in Eq. (15) does not distinguish between

the cases.

In our study, we choose SSIM (Wang et al. 2004) to

compare the two-dimensional IW-HTDF fields between

the forecasts and the observations. The previous litera-

ture has explored the subject of quantitative spatial

TABLE 6. Pearson correlation coefficients r between each SSIM

component, i.e., L, C, and S, and each component error, i.e., track,

intensity, asymmetric size (34-kt wind radii in four quadrants), and

symmetric size (maximum 34-kt wind radii) error. Values of r with

p , 0.05 are shown in boldface.

L C S

Expt 1

Track error 20.15 20.24 20.68

Intensity error 0.02 20.38 20.27

Asymmetric size error 20.62 20.49 20.007

Expt 2

Track error 20.15 20.31 20.63

Intensity error 0.026 20.33 20.24

Symmetric size error 20.66 20.48 0.12

Expt 3

Track error 20.32 20.32 20.75

Intensity error 20.51 20.51 20.14

FIG. 16. Two forecast cases with the same track forecast error but

different trajectories.
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verification (e.g., Gilbert 1884; Ebert andMcBride 2000;

Casati et al. 2004; Davis et al. 2006; Roberts and Lean

2008). TheGilbert skill score (Gilbert 1884) is a function

of counts of forecast–observation (yes–no) pairs, which

is a typical verification approach; however, it only fo-

cuses on the spatial accuracy of the forecasts, removing

the impact of any bias in the intensity forecasts, such as

rainfall amounts. Ebert and McBride (2000) introduced

an objected-oriented verification procedure for gridded

quantitative precipitation forecasts. They decomposed

the total mean squared error between the observed and

forecast fields into components as a result of 1) location,

2) rain volume, and 3) pattern. Casati et al. (2004) de-

veloped an intensity-scale approach for the verification

of spatial precipitation forecasts. The technique allows

the skill to be diagnosed as a function of the scale of the

forecast error and the intensity of the precipitation

events. The mean-square error (MSE) skill score is ob-

tained from binary images of observed and forecasts

fields and is equivalent to the Heidke skill score or

Peirce skill. Davis et al. (2006) produced an object-based

verification methodology, which is complementary to

Ebert and McBride’s approach. The method first tar-

geted rain areas by performing a convolution and

thresholding operation. Once rain areas were identified,

their attributes, including centroid location, size, orien-

tation, curvature, and intensity distribution, were com-

puted. They performed a statistical comparison of these

attributes of the forecasts and the observations. Roberts

and Lean (2008) introduced a scale-selective verification

method for examining whether improved model reso-

lution alone is able to produce more skillful pre-

cipitation forecasts on useful scales. This method is

based on binary fields that are converted from observed

and forecast rainfall fields by suitable thresholds. How-

ever, this processing (similar to Casati et al. 2004) re-

moves the effect of any bias in rainfall amounts.

The two approaches introduced by Ebert and

McBride (2000) and Davis et al. (2006) are in the same

category: object-based verification methodology, which

assesses the forecasts from different aspects (e.g., loca-

tion, rain volume, size) by transforming the spatial fields

to one-dimensional errors. If one wants to assess TC

forecasts from different components (e.g., track, in-

tensity, and size), the traditional metrics are easier and

more direct than the methods of Ebert and McBride

(2000) and Davis et al. (2006), which have a complicated

order of operations on the spatial fields. The verification

methods proposed by Gilbert (1884), Casati et al.

(2004), and Roberts and Lean (2008), which are based

on binary (0 and 1) fields, fail to account for the mag-

nitudes of errors in cases in which the forecasts

are concerned with several degrees of intensity of a

phenomenon. Meanwhile the MSE skill score (in-

troduced by Casati et al. 2004) and the fraction skill

score (defined by Roberts and Lean 2008), which are

similar in essence, provide a comprehensive score, cal-

culated relative to the MSE of a random forecast or

reference and can be used for reference in the quanti-

tative spatial verification of IW-HTDF fields. The FSS

and its assessment results of IW-HTDF fields are de-

scribed in the appendix. The FSS and the IW-HTDF

score (SSIM index) are strongly correlated (r 5 0.99,

p , 0.00001). Similar to the IW-HTDF score, FSS will

also give very low scores for small storms with little

overlap. It is not easy for small storms to receive high

scores. This problem is an intrinsic limitation of com-

parisons between two-dimensional fields.

IW-HTDF also has some potential advantages as

compared to current separate track, intensity, and size

forecasts. It should be remembered that the effects of a

hurricane can be experienced well away from the hur-

ricane center. IW-HTDF, incorporating the track, in-

tensity, and size information, provides the spatial and

temporal distribution of the perceived effects of a hur-

ricane on its surroundings. On one hand, it can provide

more specific and accurate information in space and

time for hurricane watches and warnings when consid-

ering the asymmetric wind structure. On the other hand,

it is useful for sophisticated users such as government

officials and other decision-makers in cost-benefit ana-

lyses or damage assessments by providing more detailed

two-dimensional forecast error assessments.

5. Conclusions

In this study, an integrated IW-HTDF has been

designed as a new evaluation criterion for assessing TC

forecasts. The results from the forecast verification an-

alyses of 29 hurricane cases show that the advantages of

the IW-HTDF-based forecast verification are twofold:

1) providing an integrated track, intensity, and size

forecast skill score for each TC forecast, thus avoiding

the confusion arising from contradictory assessments

among track, intensity, and size forecasts when they are

evaluated separately, and 2) providing a unique assess-

ment of forecast or model performance based on the

two-dimensional spatial similarity of all three facets of

TC forecasts, namely, track, intensity, and size, rather

than examining the forecast along a single forecast track.

Although the IW-HTDF assessment approach is ex-

ploratory, it shows an integrated way of assessing TC

forecasts or the performances of TC models for some

users who need a comprehensive assessment in

determining a model’s performance. In the current IW-

HTDF assessment, track is dominant, and it is possible
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to adjust the weightings of track, intensity, and in some

cases size for different applications or purposes. The

construction of a track density function and comparison

method for the spatial fields is not without its own lim-

itations, and other approaches or processes may be in-

troduced to provide a remedy.

It is should also be noted, however, that TC size

(wind radii) in the best-track data as well as the forecast

archive contains large uncertainty at the present.

Therefore, it is likely to distort the assessments when

TC size is included as a forecast evaluation parameter.

Until reliable TC size data become available, it is rec-

ommended that the IW-HTDF evaluation approach

presented in this study be used for track and intensity

forecasts only.
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APPENDIX

Fractions Skill Score

Roberts andLean (2008) defined a fractions skill score

(FSS) to examine whether improved model resolution

alone is able to produce more skillful precipitation

forecasts on useful scales. Our IW-HTDF score is

FIG. A1. FSSs and IW-HTDF scores in experiments 1–3 with different Sx settings: asymmetric, symmetric, and constant sizes. (Dashed

lines are 1–1 lines.)

FIG. A2. Variations of the (a) IW-HTDF score and (b) FSS, with the overlap rate (dashed lines) against storm size

with different track errors shown.
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compared with FSS, which is also a comprehensive pa-

rameter for assessing two-dimensional spatial fields. FSS

is calculated as

FSS5
MSE

f
2MSE

ref

MSE
perfect

2MSE
ref

5 12
MSE

f

MSE
ref

, (A1)

where MSEf is the mean-square error (MSE) for the

observed and forecast fields, given by

MSE
f
5

1

N
�
N

i51

(X
i
2Y

i
)2 . (A2)

The MSE of a perfect forecast is MSEperfect 5 0. The

reference MSE is defined as

MSE
ref

5
1

N

 
�
N

i51

X2
i 1 �

N

i51

Y2
i

!
, (A3)

where X and Y are the two-dimensional spatial fields of

the forecast and observation, respectively.

Figure A1 shows the FSS results of the integrated

IW-HTDF fields (derived from hurricane track, in-

tensity, and size) between the forecasts and observa-

tions. We found that FSSs and IW-HTDF scores are

strongly correlated. All the Pearson correlation co-

efficients r between FSSs and IW-HTDF scores at

different Sx settings (i.e., Sx 5 asymmetric, symmetric,

and constant size) are approximately 0.99 with p ,
0.00001. FSS is higher than the IW-HTDF score and

has a positive truncation error against the IW-HTDF

score.

FSS and IW-HTDF score have different definitions

for zero skill of a forecast. Based on Eqs. (A1)–(A3), if

and only if X and Y do not overlap each other (overlap

rate 5 0), MSEf is equal to MSEref and then FSS

obtains a value of zero, meaning zero skill (Fig. A2b).

While the IW-HTDF score is zero when the correla-

tion coefficient between the forecast and observed IW-

HTDF fields becomes zero or does not exceed the

confidence level of 90% (mainly affected by the track

error), at this time the overlap rate usually is small but

above zero (Fig. A2a). This condition is more easily

met than that of FSS. Therefore, the IW-HTDF score

is more rigorous for poor forecasts than FSS. These

two assessment scores will both severely penalize cases

where the forecast and reference IW-HTDF fields do

not overlap. It is not easy for small storms to receive

high scores, especially when there is little overlap be-

tween the predicted and observed track density func-

tions. This problem is an intrinsic limitation of both

FSS and the IW-HTDF score in the comparison be-

tween two-dimensional fields.
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